Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Rev ; 48(2)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38425054

RESUMEN

Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.


Asunto(s)
Microbiota , Salud Única , Animales , Humanos , Evolución Biológica , Microbiología del Suelo , Plantas/microbiología
2.
J Mech Behav Biomed Mater ; 152: 106405, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38271752

RESUMEN

Most fractures in the third metacarpal bone of equine athletes occur due to repeated cycles of high load magnitudes and are commonly generated during fast-training workouts. These repetitive loads may induce changes in the microstructure and mechanical properties that can develop into subchondral bone (SCB) injuries near the articular surface. In this study, we investigated the fatigue behaviour of local regions in SCB (near the articular surface i.e., 2 mm superficial SCB and the underlying 2 mm deeper SCB) under a simulated fast-training workout of an equine athlete. A fatigue test on SCB specimens was designed to simulate the fast-training workout, which comprised of repeated load cycles with varying load magnitude, representing the varying gait speed during a fast-training workout. The fatigue test was applied three times to each of the five cylindrical SCB specimens harvested from the left and right metacarpal condyles of five thoroughbred racehorses). All specimens completed at least one fatigue test. Three specimens completed all three fatigue tests with no visible cracks identified with Micro-CT scans. The other two specimens failed in the second fatigue test, and cracks were identified with Micro-CT scans in the various local regions. Using Digital Image Correlation (DIC) analysis, we found that in the local regions of all specimens, modulus decreased between load cycles corresponding to 68 and 93 MPa load magnitudes (equivalent to the fastest gallop speed). Wherein specimens that failed exhibited a greater decrease in modulus (in superficial SCB by 45.64 ± 5.66% and in deeper SCB by -36.85 ± 10.47% (n = 2)) than those not failed (in superficial SCB by -7.45 ± 14.62% and in deeper SCB by -5.67 ± 7.32% (n = 3)). This has provided evidence that the loads on SCB at galloping speeds are most likely to produce fatigue damage and that the damage induced is localised. Furthermore, one of the failed specimens exhibited a peak in the tensile strain rather than compressive strain in the superficial region with a rapid decrease in modulus. In addition, the superficial region of all specimens exhibited greater residual tensile strain than that of the deeper region.


Asunto(s)
Fracturas Óseas , Gastrópodos , Huesos del Metacarpo , Entrenamiento Simulado , Humanos , Animales , Caballos , Microtomografía por Rayos X
3.
J Mech Behav Biomed Mater ; 110: 103920, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32957215

RESUMEN

Fatigue-induced subchondral bone (SCB) injuries are prevalent among athletes due to the repetitive application of high magnitude loads on joints during intense physical training. Existing fatigue studies on bone utilize a standard fatigue test approach by applying loads of a constant magnitude and frequency even though physiological/realistic loading is a combination of various load magnitudes and frequencies. Metal materials in implant and aerospace applications have been studied for fatigue behavior under physiological or realistic loading, however, no such study has been conducted on biological materials like bones. In this study, we investigated fatigue behavior of SCB under the range of loads likely to occur during a fast-workout of an equine athlete in training. A loading protocol was developed by simulating physiological loads occurring during a fast-workout of a racehorse in training, which consisted of a sequence of compression-compression load cycles, including a warm-up (32, 54, 61 MPa) and cool-down (61, 54, 32 MPa) before and after the slow/fast/slow gallop phase of training, also referred to as a training loop. This loading protocol/training loop was applied at room temperature in load-control mode to cylindrical SCB specimens (n = 12) harvested from third metacarpal medial condyles (MCIII) of twelve thoroughbred racehorses and repeated until fatigue failure. The mean ± standard deviation for total time-to-failure (TTF) was 76,393 ± 64,243 s (equivalent to 18.3 ± 15.7 training workouts) for n = 12 specimens. We observed the highest relative energy loss (REL, hysteresis loss normalized to energy absorbed in a load cycle) under loads equivalent to gallop speeds and all specimens failed under these gallop loads. This demonstrates the importance of the gallop speeds in the development of SCB injury, consistent with observations made in live racehorses. Moreover, specimens with higher mean REL and lower mean stiffness during the first loop had a shorter fatigue life which further confirms the detrimental effect of high energy loss in SCB. Further studies are required to reconcile our results with fatigue injuries among equine athletes and understand the influence of different training programs on the fatigue behavior of subchondral bone.


Asunto(s)
Huesos del Metacarpo , Condicionamiento Físico Animal , Deportes , Animales , Caballos , Ensayo de Materiales , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...